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Critical properties of the transition between the Haldane
phase and the large-D phase of the spin-12 ferromagnetic–
antiferromagnetic Heisenberg chain with on-site anisotropy

Kiyomi Okamoto†
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152,
Japan

Received 23 October 1995

Abstract. We analytically study the ground-state quantum phase transition between the Haldane
phase and the large-D (LD) phase of theS = 1

2 ferromagnetic–antiferromagnetic alternating
Heisenberg chain with on-site anisotropy. We transform this model into a generalized version of
the alternating antiferromagnetic Heisenberg model with anisotropy. In the transformed model,
the competition between the transverse and longitudinal bond alternations yields the Haldane–LD

transition. Using the bosonization method, we show that the critical exponents vary continuously
on the Haldane–LD boundary. Our scaling relations between critical exponents explains very
well the numerical results of Hida.

1. Introduction

Since Haldane’s prediction [1, 2], the integer spin chains have been attracting much attention.
Hida [3, 4] tried to elucidate the properties of the spin-1 Heisenberg chain from the
standpoint of the spin-1

2 ferromagnetic–antiferromagnetic alternating chain. He considered
the Hamiltonian [4]

HD = 2J

N∑
j=1

S2j · S2j+1 + 2J ′
N∑

j=1

S2j−1 · S2j + D

N∑
j=1

(Sz
2j−1 + Sz

2j )
2 (1.1)

whereSj is the spin-12 operator. We assume thatJ > 0 (antiferromagnetic) andJ ′ < 0
(ferromagnetic) and we are only interested in the ground state. Hereafter we call the model
(1.1) the ‘D-model’ following Hida [5].

In the case ofJ ′ → −∞, where the spinsS2j−1 andS2j form a triplet, the model (1.1)
reduces to a spin-1 antiferromagnetic Heisenberg chain with on-site anisotropy

ĤS=1
D = J

2

N∑
j=1

Ŝj · Ŝj+1 + D

N∑
j=1

(Ŝz
j )2 (1.2)

where Ŝj = S2j−1 + S2j is the spin-1 operator. WhenJ ′ = D = 0, on the other hand,
Hamiltonian (1.1) reduces to the two-spin problem. Its ground state is the complete dimer
state in which the spinsS2j andS2j+1 form a singlet pair(1/

√
2) (↑2j↓2j+1 − ↓2j↑2j+1).
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When D = 0, therefore, the Hamiltonian (1.1) smoothly connects the dimer state of the
spin-1

2 chain and the Haldane state of the spin-1 chain.
Hida [3] numerically diagonalized the finite system of Hamiltonian (1.1) in theD = 0

case to find that there is no evidence for the phase transition of the ground state between
J ′ = 0 andJ ′ = −∞. Therefore he concluded that the Haldane phase of the spin-1 chain
can be interpreted as the special case of the dimer phase of the spin-1

2 chain. This picture
was supported by the work of Kohmoto and Tasaki [6], and Takada [7] who used the non-
local unitary transformation. Hida performed the numerical diagonalization for theD 6= 0
case to draw the phase diagram of theD-model on theJ ′–D plane [4] and also to estimate
the critical exponents of the Haldane–LD transition [8].

Yamanakaet al [9] investigated the model

Hλ = 2J

N∑
j=1

(Sx
2j S

x
2j+1 + S

y

2j S
y

2j+1 + λSz
2j S

z
2j+1) + 2J ′

N∑
j=1

S2j−1 · S2j (1.3)

where the parameterλ represents the interaction anisotropy of the antiferromagnetic bonds.
We call this model the ‘λ-model’. This model is equivalent to the spin-1XXZ model

ĤS=1
λ = J

2

N∑
j=1

(Ŝx
j Ŝx

j+1 + Ŝ
y

j Ŝ
y

j+1 + λŜz
j Ŝz

j+1) (1.4)

in the limit of J ′ → −∞. We note that the ferromagnetic bonds should be isotropic so
that S2j and S2j+1 form a triplet pair whenJ ′ → −∞. They mapped this model onto
the highly anisotropic version of the two-dimensional Ashkin–Teller model and performed
the ‘high temperature expansion’ to obtain the ground-state phase diagram. Their phase
diagram consists of several phases, including the Haldane phase, the Néel phase and the
XY phase. Hida [5] also drew the phase diagram of theλ-model by mapping theλ-model
onto theD-model. His conclusion was consistent with that of Yamanakaet al [9].

Okamotoet al [10] have shown that the Haldane–LD boundary of Hida’s phase diagram
(obtained by numerical calculations) for theD-model can be semi-quantitatively reproduced
by an analytical method. In this paper, we continue their work to investigate the critical
properties of the Haldane–LD transition. We show that the Haldane–LD transition is of the
Gaussian universality class and the critical exponents vary continuously on the boundary. In
section 2, we explain the nature of the Haldane–LD transition. In section 3 the bosonization
approach to the Haldane–LD transition is given and the critical properties are discussed. The
last section (section 4) is devoted to a discussion.

2. Nature of the Haldane–LD transition

In the following we investigate Hamiltonian (1.1) assumingJ ′ < 0. Performing the spin
rotation around thez-axis,

S̃x
j = −Sx

j S̃
y

j = −S
y

j S̃z
j = Sz

j for j = 4l, 4l + 1

S̃x
j = Sx

j S̃
y

j = S
y

j S̃z
j = Sz

j otherwise
(2.1)

we can transform Hamiltonian (1.1) into an antiferromagnetic form [4]

H̃ = 2J0

2N∑
j=1

{(S̃x
j S̃x

j+1 + S̃
y

j S̃
y

j+1 + 1S̃z
j S̃z

j+1) + (−1)j [δ⊥(S̃x
j S̃x

j+1 + S̃
y

j S̃
y

j+1) + δzS̃
z
j S̃z

j+1)]}

(2.2)
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where

J0 = J (1 + |J̃ ′|)
2

1 = 1 + D̃ − 2|J̃ ′|
1 + |J̃ ′|

δ⊥ = 1 − |J̃ ′|
1 + |J̃ ′| δz = 1 − |J̃ ′| − (D̃ − 2|J̃ ′|)

1 + |J̃ ′|

(2.3)

and

J̃ ′ ≡ J ′/J D̃ ≡ D/J . (2.4)

The Hamiltonian (2.2) can be interpreted as a generalized version of the alternating
antiferromagnetic Heisenberg chain with anisotropy (see figure 1). The point(|J̃ ′|, D̃) =
(1, 2) (called the S point) is the solvable point where Hamiltonian (2.2) represents the
uniform and isotropic antiferromagnetic chain. The S point is the tricritical point of the
Haldane phase, theLD phase and the Ńeel phase in Hida’s phase diagram [4].

Figure 1. Important parameters in the Hamiltonian (2.2) on the
|J̃ ′|–D̃ plane. The transverse and longitudinal alternations are
mutually competing in the shaded areas. The point S(|J̃ ′| =
1, D̃ = 2) corresponds to the uniform isotropic antiferromagnetic
Heisenberg model.

In the bosonization theory of the bond alternation problem, it has long been considered
that theδz term plays an irrelevant role. However, we have recently pointed out that the
ground state of the Hamiltonian (2.2) in the case ofδ⊥ = 0 andδz > 0 is the dimer state
[11, 12]. This shows the importance of theδz term, because the ground state would be the
spin-fluid state if theδz term played an irrelevant role. When1 = 1 andδ⊥ = δz = 1,
the ground state of Hamiltonian (2.3) is the complete dimer state (an array of local singlet
dimers), and both theδz term and theδ⊥ term give the same contribution to the excitation
gap apart from a factor 2. Then, in the1 = 1 andδ⊥ = δz > 0 case where the ground state
is the dimer state, we expect that the excitation gap should behave as

εgap ∼ (2δ⊥ + δz)
ν (2.5)

due to theSU(2) symmetry. Hereν is the exponent of the correlation length and we do not
enter into the logarithmic correction problem [13]. Thus we can consider that theδ⊥ term
and theδz term are mutually cooperative whenδ⊥δz > 0, and competing whenδ⊥δz < 0.
Of course, when1 6= 1, equation (2.5) itself may no longer be valid.
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Let us consider the1 < 1 case, where we can exclude the possibility of the Néel
state. Whenδ⊥ > 0 and δz > 0, an effective singlet dimer is formed by spinsS̃2j and
S̃2j+1. Their coupling is antiferromagnetic in the original spin (S) representation before the
transformation (2.1). Since this singlet dimer is still a singlet dimer in theS representation,
this state is the Haldane state. On the other hand, whenδ⊥ < 0 andδz < 0, spinsS̃2j−1 and
S̃2j (their coupling is ferromagnetic in theS representation) form an effective singlet pair.
By the transformation (2.1), this singlet dimer is transformed into the triplet dimer (like the
(1/

√
2)(↑2j−1↓2j + ↓2j−1↑2j ) state) in theS representation. This is thêSz = 0 state of

the spin withŜ = 1. Therefore this state is nothing more than theLD state. We note that,
in the S̃ representation, both the Haldane state and theLD state are the singlet dimer state,
but the dimer configuration is different by one spin site between these two states.

What happens in the region whereδ⊥ < 0 and δz > 0? If the effect ofδz (δ⊥) is
predominant, the ground state may be the Haldane (LD) state. Therefore the ground-state
phase transition between the Haldane state and theLD state can be observed in this region.
The Haldane–LD phase boundary may be determined by the line on which the effects ofδ⊥
andδz cancel each other out. From equation (2.5), the simplest estimate for the Haldane–LD

boundary may be

2δ⊥ + δz = 0 (2.6)

which results in

D̃ = 2|J̃ ′| . (2.7)

Although this estimate is too rough because equation (2.5) may be valid only when1 = 1,
the nature of the Haldane–LD transition is well explained by the above-mentioned picture.
A more elaborate estimation will be given in the next section.

3. Critical properties of the Haldane–LD transition

Through a careful bosonization procedure, we can map Hamiltonian (2.2) onto a generalized
version of the sine–Gordon Hamiltonian

H̃b = 2J0

∫
dx {A(∇θ)2 + CP 2 + BI cos 2θ − B⊥ cosθ − Bz(∇θ)2 cosθ} (3.1)

where the commutation relation

[θ(x), P (x ′)] = iδ(x − x ′) (3.2)

holds. The coefficientsB⊥, Bz andBI are obtained directly from the bosonization procedure
as

B⊥ = δ⊥
a

Bz = δza

π
BI = 1

2a
(3.3)

wherea is the spin spacing. These expressions are considered to be valid whenδ⊥ � 1,
δz � 1, 1 � 1. Similar expressions were already obtained by Nakano and Fukuyama [14],
but there was an error in the sign in their expressions. In their expressions, theB⊥ term
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and theBz term are mutually competing whenδ⊥δz > 0. From the discussion of section 2,
these terms should be mutually cooperative whenδ⊥δz > 0, as is realized in (3.1).

Since the termBI cos 2θ is irrelevant for the1 < 1 case with which we are concerned,
we may neglect this term by setting

BI = 0 . (3.4)

For the coefficientsA andC, the bosonization procedure leads to

A = a

8π

(
1 + 31

π

)
C = 2πa

(
1 − 1

π

)
. (3.5)

Of course, these expressions may be valid for1 � 1. Therefore we cannot use such
expressions, because we require expressions valid near1 = 1 to discuss the Haldane–LD

transition near the S point (1 = 1, δ⊥ = δz = 0). Whenδ⊥ = δz = 0, the Hamiltonian
(2.2) represents the uniformXXZ chain for which the exact results are available. In this
case, the spin wave velocityv [15], and the power decay exponentη [16], defined by
(−1)r〈Sz

0S
z
r 〉 ∼ r−η, are

v

2J0
= πa

√
1 − 12

2 cos−1 1
(3.6)

η = 2

1 + (π/2) sin−1 1
(3.7)

respectively. If we use the bosonized Hamiltonian (3.1) withBI = B⊥ = Bz = 0, we obtain

v

2J0
= 2

√
AC η = 1

2π

√
C

A
. (3.8)

From equations (3.6)–(3.8) we can immediately write down the expressions forA andC.
This procedure for the adjustment of the coefficients was first proposed by Cross and Fisher
[17] and applied by Nakano and Fukuyama [14, 18]. If we expandA and C with respect
to ε ≡ 1 − 1, we obtain

v

2J0
= πa

2
+ O(ε) η = 1 +

√
2ε

π
(3.9)

A = a

8

(
1 −

√
2ε

π

)
C = π2a

2

(
1 +

√
2ε

π

)
. (3.10)

up to the lowest order ofε. Expressions (3.9) and (3.10) were also obtained by Inagaki
and Fukuyama [19]. Thus our bosonized expression for the spin Hamiltonian (2.2) is
equation (3.1) with equations (3.3) and (3.10). We note that this is valid for|δ⊥| � 1,
|δz| � 1 andε � 1.

To discuss the critical properties of the Haldane–LD transition, we apply the self-
consistent harmonic approximation (SCHA), which is essentially the variational method,
to the bosonized Hamiltonian (3.1) whenδ⊥ < 0 and δz > 0. In the Haldane state, as
is discussed in section 2, the effect ofδz is predominant and the average value ofθ with
respect to the ground state,〈θ〉, is

〈θ〉 = 0 (Haldane state) (3.11)
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so that theBz term gains the energy. In theLD state, on the other hand, the effect ofδz is
predominant and

〈θ〉 = π (LD state) . (3.12)

Then we set theSCHA Hamiltonian

H̃S = 2J0

∫
dx {A(∇φ)2 + CP 2 + B̃φ2} (3.13)

with

φ ≡
{

θ (Haldane state)

θ − π (LD state)
(3.14)

whereB̃ is the variational parameter. The parameterB̃ should be determined so that〈H̃b〉S

is minimized, i.e.

∂〈H̃b〉S

∂B̃
= 0 (3.15)

where〈· · ·〉S denotes the average with respect to the ground state ofH̃S.
The excitation spectrum of̃HS is

ωS(q) = v

√
q2 + q2

c (3.16)

where

q2
c ≡ B̃/A (3.17)

andvqc is the excitation gap. SincẽHS is harmonic, the relations

〈exp(iuφ)〉S = exp

(
−u2

2
〈φ2〉S

)
(3.18)

〈(∇φ)2 cosφ〉S = 〈(∇φ)2〉S〈cosφ〉S (3.19)

hold with u being a real number. The average〈(∇θ)2〉S is

〈(∇θ)2〉S = C

L

∑
q

q2

ωS(q)
= η

2
Q (3.20)

Q ≡
∫ α−1

0

0

q2 dq√
q2 + q2

c

' 1

α2
0

(α0qc � 1) (3.21)

whereL is the system length, and the upper cut-off of theq-summation is denoted byα−1
0

which may be proportional toa−1. Luther and Peschel [20] suggestedπα0 = a. However,
care must be taken to estimateQ, because equation (3.20) is strongly dependent onQ. Let
us consider the1 = 1 (i.e. η = 1) case. As discussed in section 2, for1 = 1, the effect



Transition between the Haldane and large-D phases 1645

of δ⊥ and δz cancel out each other when equation (2.6) holds. Here we estimate that the
equation

〈B⊥ cosθ + Bz(∇θ)2 cosθ〉S = 0 (3.22)

reproduces equation (2.6) when1 = 1, which yields

Q = π/a2 . (3.23)

After some calculations, for the Haldane state, we obtain

∂〈H̃b〉S

∂B̃
= L

{
B⊥
2

exp

(
−〈φ2〉S

2

)
+ Bz

2
exp

(
−〈φ2〉S

2

)
〈(∇φ)2〉S − B̃

}
∂〈φ2〉S

∂B̃

− LBz exp

(
−〈φ2〉S

2

)
∂〈(∇φ)2〉S

∂B̃
. (3.24)

The second term of theRHS of equation (3.24) can be dropped, because〈(∇φ)2〉S is almost
independent ofB̃, as can be seen from equations (3.20) and (3.21). Then, equation (3.15)
with equation (3.24) is reduced to

B̃ = 1
2 exp

(
−〈φ2〉S

2

) (
B⊥ + πη

2a2
Bz

)
. (3.25)

The quantity〈φ2〉S is estimated as

〈φ2〉S = C

L

∑
q

1

ωS(q)
= η log

2π

aqc
(aqc � 1) (3.26)

which leads to the self-consistent gap equation

Aq2
c = 1

2a

(aqc

2π

)!η/2 (
δ⊥ + η

2
δz

)
. (3.27)

A similar calculation can be performed for theLD state. If we replaceδ⊥ + (η/2) δz

in equation (3.27) by|δ⊥ + (η/2) δz|, the gap equation becomes valid both for the Haldane
state and for theLD state. Thus the excitation gap behaves as

εgap = vqc ∼
∣∣∣δ⊥ + η

2
δz

∣∣∣2/(4−η)

. (3.28)

The Haldane–LD phase boundary can be obtained fromεgap = 0, which leads to

2(1 − |J̃ ′|) + (1 − D̃ + |J̃ ′|)
1 + 1

π

√
2|J̃ ′| − D̃

1 + |J̃ ′|

 = 0 . (3.29)

where equations (2.3), (3.3) and (3.9) are employed. Okamotoet al [10] have already
obtained this phase boundary equation, compared it with Hida’s numerical result [8] and
discussed its validity.
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If the critical value of D is denoted byDc when |J ′| is fixed, we can rewrite
equation (3.28) as

εgap ∼ |D − Dc|ν (3.30)

ν = 2

4 − η
. (3.31)

Thus we obtain

νH = νLD = ν (3.32)

whereνH (νLD) is the critical exponent of the excitation gap when the Haldane–LD boundary
is approached from the Haldane (LD) phase.

The calculation of the longitudinal spin correlation〈Sz
j Sz

l 〉 by the use ofH̃S has already
been done by the author [21]. Here we only write down the final expression for〈Sz

j Sz
l 〉,

without entering into details:

〈Sz
j Sz

l 〉 ∼ (−1)|j−l|
√|j − l| exp

(
−|j − l|a

ξ

)
(|j − l| → ∞) (3.33)

whereξ is the correlation length defined by

ξ = v

εgap
∼

∣∣∣δ⊥ + η

2
δz

∣∣∣−ν

∼ |D − Dc|−ν . (3.34)

Thusν is also the exponent of the correlation length as expected. Comparing the result of
[21] with the exact result for theXY case [22], we may rely on the exponential factor in
equation (3.33), although the preceding power factor is not reliable.

Hida [8] proposed string order parameters for the Haldane phase and theLD phase. In
the S̃ representation, these string order parameters are defined by

Oα
even = lim

|j−l|→∞
Oα

even(j − l) (for the Haldane phase) (3.35)

Oα
odd = lim

|j−l|→∞
Oα

odd(j − l) (for the LD phase) (3.36)

with

Oα
even(j − l) = −4〈S̃α

2j exp{iπ(S̃α
2j+1 + S̃α

2j+2 + · · · + S̃α
2j−2)}S̃α

2l−1〉 (3.37)

Oα
odd(j − l) = −4〈S̃α

2j−1 exp{iπ(S̃α
2j + S̃α

2j+1 + · · · + S̃α
2l−1)}S̃α

2l〉 (3.38)

α = x, y, z . (3.39)

By the use of the identitỹSz
j = exp(iπS̃z

j )/2i valid for the spin-12 operators, we can rewrite
equations (3.37) and (3.38) as

Oz
even(j − l) = 〈exp{iπ(S̃z

2j + S̃z
2j+1 + · · · + S̃z

2l−1)}〉 (3.40)

Oz
odd(j − l) = 〈exp{iπ(S̃z

2j−1 + S̃z
2j + · · · + S̃z

2l)}〉 (3.41)
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respectively. Since the slowly varying part of thez-component of the spin density is
expressed as(1/2π) (∂θ/∂x), the boson representations ofOz

even(j − l) andOz
odd(j − l) are

Oz
even(x − x ′) = Oz

odd(x − x ′)
= 〈exp{i[θ(x) − θ(x ′)]/2}〉
= 〈exp{i[φ(x) − φ(x ′)]/2}〉
≡ Oz(x − x ′) . (3.42)

We note that the difference between theOz
even(x − x ′) andOz

odd(x − x ′) is lost due to the
continuum approximation used in the bosonization method.

Let us calculateOz in the framework of theSCHA. Due to the harmonic nature of̃HS,
we have

Oz(x − x ′) = exp
{− 1

8〈[θ(x) − θ(x ′)]2〉S
}

= exp
(− 1

4〈φ2〉S
)

exp
{

1
4〈φ(x)φ(x ′)〉S

}
. (3.43)

The average〈φ(x)φ(x ′)〉S is estimated as [21]

〈φ(x)φ(x ′)〉S = C

πv
K0(qc[|x − x ′| + α1]) (3.44)

α1 = ae−γ

π
γ = 0.5772. . . (Euler’s constant) (3.45)

whereKn(y) is thenth order modified Bessel function of the second kind. We note that the
parameterα1 is determined so that equation (3.26) is reproduced when|x − x ′| = 0. Using
the asymptotic behaviour ofK0(y)

K0(y) '
√

π

2y
e−y (y → ∞) (3.46)

we obtain

Oz = exp
( − 1

4〈φ2〉S
)

∼ qη/4
c ∼ |D − Dc|η/(8−2η) . (3.47)

If we denote the exponents ofOz
even andOz

odd by 2βz
H and 2βz

LD respectively (for the factor 2,
we follow Hida’s definition [8]), we see

βH = βLD = η

16− 4η
≡ β . (3.48)

We can also calculate the asymptotic behaviour ofOz(x − x ′) when |x − x ′| → ∞ just
on the Haldane–LD boundary. Using equations (3.43)–(3.45) and taking the limitqc → 0,
we obtain

Oz(x − x ′)|D=Dc ∼ |x − x ′|−η/4 (3.49)

where the asymptotic form

K0(y) ' − logy (y → 0) (3.50)
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is employed. Hida [8] also numerically calculated the system size dependence ofOz
even and

Oz
odd on the Haldane–LD boundary. He defined

Oz
even(N)|D=Dc ∼ N−µH (3.51)

Oz
odd(N)|D=Dc ∼ N−µLD (3.52)

whereN is the system size. Although Hida [8] usedηz for these exponents, we useµ to
avoid confusion. From equation (3.49), we can expect

µH = µLD = η

4
≡ µ . (3.53)

This result can also be obtained from the finite size scaling ansatz

Oz(|D − Dc|, N) ∼ N−µf (N |D − Dc|ν) (3.54)

where we note thatN/ξ ∼ N |D − Dc|ν . The form of equation (3.54) is chosen so that
equations (3.51) and (3.52) are reproduced atD = Dc. If we fix |D − Dc| and take the
limit N → ∞, we obtain

f (x) ∼ xµ (x → ∞) (3.55)

Oz(|D − Dc|, N = ∞) ∼ |D − Dc|µν (3.56)

from the condition thatOz(|D−Dc|, N) should be independent ofN whenN → ∞. From
equations (3.47) and (3.48) it follows that

µν = 2β (3.57)

which readily leads to equation (3.53). The relation (3.57) was also noticed by Hida [8].

4. Discussion

We have calculated several critical exponents of the Haldane–LD transition. These exponents
are controlled byν, which varies continuously on the Haldane–LD boundary. Thus the
present transition is of the Gaussian universality class. This fact has already been pointed
out by several groups [8–10].

Table 1. Critical exponents of the Haldane–LD transition. The exponentsν, βH, βLD , µH and
µLD are numerical results of Hida [8, 23], andβtheor andµtheor are calculated from Hida’sν by
the use of equations (4.2) and (4.3).

|J̃ ′| ν βH βLD βtheor µH µLD µtheor

1.5 0.801 0.165± 0.002 0.141± 0.004 0.150 0.411± 0.002 0.352± 0.004 0.375
2.0 0.879 0.200± 0.003 0.184± 0.002 0.190 0.454± 0.005 0.419± 0.003 0.431
2.5 0.975 0.238± 0.002 0.223± 0.002 0.238 0.489± 0.003 0.458± 0.003 0.487
3.0 1.031 0.255± 0.001 0.257± 0.002 0.266 0.494± 0.001 0.500± 0.003 0.515
4.0 1.120 0.297± 0.005 0.294± 0.02 0.310 0.530± 0.01 0.525± 0.04 0.553
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In this paper we have used the mapping of the original spin Hamiltonian onto the
generalized version of the sine–Gordon Hamiltonian. Since several approximations have
been used in the course of the mapping, the values ofDc and the critical exponent
themselves are unreliable. We believe, however, that the present theory well describes the
qualitative feature of the Haldane–LD transition. From equations (3.31), (3.48) and (3.53),
our predictions for the relations between critical exponents are

νH = νLD = ν (4.1)

βH = βLD = β = 2ν − 1

4
(4.2)

µH = µLD = µ = 1 − 1

2ν
. (4.3)

The reliability of the present theory can be examined by testing whether equations (4.2)
and (4.3) hold or not in Hida’s numerical result [8, 23]. This test is summarized in table 1,
where the exponentsν, βH, βLD, µH andµLD are numerical results of Hida andβtheor and
µtheor are calculated from Hida’sν through equations (4.2) and (4.3). As can be seen, the
values ofβtheor andµtheor agree very well withβH andβLD, andµH andµLD, respectively.
Therefore we can say that our theory successfully describes the qualitative feature of the
Haldane–LD transition.
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