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Abstract. We analytically study the ground-state quantum phase transition between the Haldane
phase and the largb- (Lb) phase of theS = % ferromagnetic—antiferromagnetic alternating
Heisenberg chain with on-site anisotropy. We transform this model into a generalized version of
the alternating antiferromagnetic Heisenberg model with anisotropy. In the transformed model,
the competition between the transverse and longitudinal bond alternations yields the Haldane—
transition. Using the bosonization method, we show that the critical exponents vary continuously
on the Haldane-p boundary. Our scaling relations between critical exponents explains very
well the numerical results of Hida.

1. Introduction

Since Haldane’s prediction [1, 2], the integer spin chains have been attracting much attention.
Hida [3,4] tried to elucidate the properties of the spin-1 Heisenberg chain from the
standpoint of the spir%— ferromagnetic—antiferromagnetic alternating chain. He considered
the Hamiltonian [4]

N N N
Hp=2J) Spj-Soja+2J ) Soj1-So;+ DY (S5 4+ 55 (1.2)
j=1 j=1 j=1

where S; is the spin% operator. We assume thdt > 0 (antiferromagnetic) and’ < 0
(ferromagnetic) and we are only interested in the ground state. Hereafter we call the model
(1.1) the ‘D-model’ following Hida [5].

In the case of/’ — —oo, where the spin$>;_1 andS,; form a triplet, the model (1.1)
reduces to a spin-1 antiferromagnetic Heisenberg chain with on-site anisotropy

. I . . .
Hyt=52 8 St Dy (57 (1.2)

whereS‘j = S3j_1+ S>; is the spin-1 operator. Whe#' = D = 0, on the other hand,
Hamiltonian (1.1) reduces to the two-spin problem. Its ground state is the complete dimer
state in which the spin§>; and.S,;,, form a singlet painl/~/2) (t2jd2j+1 — 42 T2j+1)-
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When D = 0, therefore, the Hamiltonian (1.1) smoothly connects the dimer state of the
spin-% chain and the Haldane state of the spin-1 chain.

Hida [3] numerically diagonalized the finite system of Hamiltonian (1.1) infhe- 0
case to find that there is no evidence for the phase transition of the ground state between
J' =0 andJ’ = —oo. Therefore he concluded that the Haldane phase of the spin-1 chain
can be interpreted as the special case of the dimer phase of thé shain. This picture
was supported by the work of Kohmoto and Tasaki [6], and Takada [7] who used the non-
local unitary transformation. Hida performed the numerical diagonalization foDtbe 0
case to draw the phase diagram of thenodel on the/’—D plane [4] and also to estimate
the critical exponents of the Haldan®-transition [8].

Yamanakaet al [9] investigated the model

N N
Hu=27) (838341 + 3,831+ A85,55,.0) + 27 ) Saj 1+ Sy (1.3)
=1 j=1

where the parameter represents the interaction anisotropy of the antiferromagnetic bonds.
We call this model thex-model’. This model is equivalent to the spinXIlXZ model

coct IR e Avay
=5 2 S8+ 8780+ 28550 (1.4)
=

in the limit of // — —oo. We note that the ferromagnetic bonds should be isotropic so
that S»; and S,;,1 form a triplet pair when/’ — —oo. They mapped this model onto
the highly anisotropic version of the two-dimensional Ashkin—Teller model and performed
the ‘high temperature expansion’ to obtain the ground-state phase diagram. Their phase
diagram consists of several phases, including the Haldane phasegéhgiase and the
XY phase. Hida [5] also drew the phase diagram ofittraodel by mapping the-model
onto the D-model. His conclusion was consistent with that of Yamanetkal [9].

Okamotoet al [10] have shown that the Haldans-boundary of Hida's phase diagram
(obtained by numerical calculations) for tfiemodel can be semi-quantitatively reproduced
by an analytical method. In this paper, we continue their work to investigate the critical
properties of the Haldanep transition. We show that the Haldane-transition is of the
Gaussian universality class and the critical exponents vary continuously on the boundary. In
section 2, we explain the nature of the Haldametransition. In section 3 the bosonization
approach to the Haldanes-transition is given and the critical properties are discussed. The
last section (section 4) is devoted to a discussion.

2. Nature of the Haldane-D transition

In the following we investigate Hamiltonian (1.1) assumiig< 0. Performing the spin
rotation around the-axis,

§r=-s¢ Y =—s7 §i =53 for j =41, 4l +1

J J
X __ QX oY QY oz .
S =5 Sj = Sj S; = Sf otherwise

we can transform Hamiltonian (1.1) into an antiferromagnetic form [4]

2.1)

= 2JOZ{(Sfo+1+Sy 1+ ASESE )+ (—D[8L(SESE, + 878Y, ) + 8. 8585, )

2.2)
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where
JA+\|J D—2|J
Jo = M A=1 ¥
2 1+ J
_ _ ~ _ (2.3)
1—J| 1-|J =D =27
1= = 8, = -
147 14177
and
J =7/ D=D/J. (2.4)

The Hamiltonian (2.2) can be interpreted as a generalized version of the alternating
antiferromagnetic Heisenberg chain with anisotropy (see figure 1). The @dintD) =

(1,2) (called the S point) is the solvable point where Hamiltonian (2.2) represents the
uniform and isotropic antiferromagnetic chain. The S point is the tricritical point of the
Haldane phase, theb phase and the &kl phase in Hida's phase diagram [4].

Figure 1. Important parameters in the Hamiltonian (2.2) on the
|J'|-D plane. The transverse and longitudinal alternations are
mutually competing in the shaded areas. The poigt/§ =

1, D = 2) corresponds to the uniform isotropic antiferromagnetic
Heisenberg model.

|7

In the bosonization theory of the bond alternation problem, it has long been considered
that thes, term plays an irrelevant role. However, we have recently pointed out that the
ground state of the Hamiltonian (2.2) in the case of= 0 and$, > 0 is the dimer state
[11,12]. This shows the importance of theterm, because the ground state would be the
spin-fluid state if the, term played an irrelevant role. Whet = 1 ands, = §, = 1,
the ground state of Hamiltonian (2.3) is the complete dimer state (an array of local singlet
dimers), and both thé, term and thes, term give the same contribution to the excitation
gap apart from a factor 2. Then, in te= 1 ands, = §, > 0 case where the ground state
is the dimer state, we expect that the excitation gap should behave as

8gap ~ (ZSJ_ + SZ)V (2.5)

due to theSU (2) symmetry. Here is the exponent of the correlation length and we do not
enter into the logarithmic correction problem [13]. Thus we can consider thak, therm
and thes, term are mutually cooperative wheénds, > 0, and competing whe#, §, < O.

Of course, whem # 1, equation (2.5) itself may no longer be valid.
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Let us consider theA < 1 case, where we can exclude the possibility of theEelN
state. Whers; > 0 and§, > 0, an effective singlet dimer is formed by spiﬁsj and
52j+1- Their coupling is antiferromagnetic in the original sp#) (representation before the
transformation (2.1). Since this singlet dimer is still a singlet dimer inghepresentation,
this state is the Haldane state. On the other hand, When 0 ands, < 0, spinsS»;_; and
S‘zj (their coupling is ferromagnetic in th8 representation) form an effective singlet pair.
By the transformation (2.1), this singlet dimer is transformed into the triplet dimer (like the
(1/\f2)(T2,-,1¢2,- + J2j-112;) state) in theS representation. This is th& = 0 state of
the spin withS = 1. Therefore this state is nothing more than thestate. We note that,
in the S representation, both the Haldane state and.thetate are the singlet dimer state,
but the dimer configuration is different by one spin site between these two states.

What happens in the region whefe < 0 andé§, > 0? If the effect ofs, (8.) is
predominant, the ground state may be the Haldapg §tate. Therefore the ground-state
phase transition between the Haldane state andohs&ate can be observed in this region.
The Haldanetb phase boundary may be determined by the line on which the effeéts of
andsg, cancel each other out. From equation (2.5), the simplest estimate for the Haldane—
boundary may be

25, +48,=0 (2.6)
which results in
D=2J. (2.7)
Although this estimate is too rough because equation (2.5) may be valid only &vken,
the nature of the Haldanes transition is well explained by the above-mentioned picture.
A more elaborate estimation will be given in the next section.

3. Critical properties of the Haldane-LD transition

Through a careful bosonization procedure, we can map Hamiltonian (2.2) onto a generalized
version of the sine—Gordon Hamiltonian

Hp = 2]o/dx {A(V6)? + CP?>+ B cos D — B, cost — B.(VH)?cosh} (3.1)
where the commutation relation
[0(x), P(xN] =i8(x —x") (3.2)

holds. The coefficient8,, B, andB, are obtained directly from the bosonization procedure
as

B, = — B, =" B = (3.3)
a T

Rl >

wherea is the spin spacing. These expressions are considered to be validswhenl,
8, < 1, A <« 1. Similar expressions were already obtained by Nakano and Fukuyama [14],
but there was an error in the sign in their expressions. In their expressions, therm
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and theB, term are mutually competing wheh s, > 0. From the discussion of section 2,
these terms should be mutually cooperative whef, > 0, as is realized in (3.1).

Since the termB, cos @ is irrelevant for theA < 1 case with which we are concerned,
we may neglect this term by setting

B =0. (3.4)

For the coefficientsA and C, the bosonization procedure leads to

A:SC:T<1+37TA> C:Zﬂd(l—i). (3.5)

Of course, these expressions may be valid for« 1. Therefore we cannot use such
expressions, because we require expressions valid sdearl to discuss the Haldane>-
transition near the S pointA(= 1, §, = §, = 0). Whens, = §, = 0, the Hamiltonian
(2.2) represents the uniforkiXZ chain for which the exact results are available. In this
case, the spin wave velocity [15], and the power decay exponemt[16], defined by
(—1)(S557) ~ r~", are

v a1 — A2 (3.6)
2Jo 2coslA '
2
3.7)

T A /2)sinia

respectively. If we use the bosonized Hamiltonian (3.1) vlith= B, = B, = 0, we obtain

v 1 /C
— =2/ AC = ——. 3.8
2.]0 7 2tV A ( )
From equations (3.6)—(3.8) we can immediately write down the expressions éord C.
This procedure for the adjustment of the coefficients was first proposed by Cross and Fisher
[17] and applied by Nakano and Fukuyama [14,18]. If we expanand C with respect
toe =1— A, we obtain

v Ta J2e
2
A=“<1_‘/Z) c=M<1+@). (3.10)
8 b4 2 b4

up to the lowest order of. Expressions (3.9) and (3.10) were also obtained by Inagaki
and Fukuyama [19]. Thus our bosonized expression for the spin Hamiltonian (2.2) is
equation (3.1) with equations (3.3) and (3.10). We note that this is validsidr« 1,
18,] <« 1 ande « 1.

To discuss the critical properties of the Haldare-transition, we apply the self-
consistent harmonic approximatioscHa), which is essentially the variational method,
to the bosonized Hamiltonian (3.1) whén < 0 andg, > 0. In the Haldane state, as
is discussed in section 2, the effect &fis predominant and the average valuedofvith
respect to the ground stat@), is

0)=0 (Haldane state (3.12)
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so that theB, term gains the energy. In th® state, on the other hand, the effectdofis
predominant and

O)=m (LD state . (3.12)

Then we set thescHA Hamiltonian

Hs = 2Jo f dx {A(V$)% + CP? + Bg?) (3.13)
with
e (Haldane state) (3.14)
0= { 0—1x (LD state) '

where B is the variational parameter. The parameieshould be determined so theﬁb)s
is minimized, i.e.

_o (3.15)

where (- - -)s denotes the average with respect to the ground statésof
The excitation spectrum df(s is

ws(q) = v,/q* +q¢ (3.16)

where
g2 = B/A (3.17)

andug. is the excitation gap. SincHs is harmonic, the relations

2
(expliug))s = eXp<—”2 <¢>2>s> (3.18)
(V)2 cosp)s = ((Vg)?)s(cosp)s (3.19)

hold with u being a real number. The averag&0)?)s is

C q° n
VH)2)g = — = 3.20
((VO)%)s L2 ()~ 2 0 (3.20)
at 2
o g°dg 1
= T~ ! 3.21
o /o Trad o (crog ) (3.21)

whereL is the system length, and the upper cut-off of theummation is denoted hygl
which may be proportional te—. Luther and Peschel [20] suggested, = a. However,
care must be taken to estimage because equation (3.20) is strongly dependenfor et
us consider theA = 1 (i.e.n = 1) case. As discussed in section 2, far= 1, the effect
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of §, and$, cancel out each other when equation (2.6) holds. Here we estimate that the
equation

(B, cosd + B.(V6)?cosd)s =0 (3.22)
reproduces equation (2.6) when= 1, which yields
Q=m/d®. (3.23)

After some calculations, for the Haldane state, we obtain
d(Hp)s . [BL #?s\ | B (@)s 2 =) 0(9%s
o)« on( - amors-a] %
<¢2>s> 3{((Ve)?)s
2 aB

— LB, exp (— (3.24)

The second term of theHs of equation (3.24) can be dropped, beca((3&p)?)s is almost
independent of3, as can be seen from equations (3.20) and (3.21). Then, equation (3.15)
with equation (3.24) is reduced to

2
B=1 exp(— <¢2>5> (BL + ﬂ&) . (3.25)

The quantity(¢?)s is estimated as

, C 1 2
== =nlog == L1 3.26
@%)s = Xq: ety =109 (age < 1) (3.26)

which leads to the self-consistent gap equation

Aq? = % (%)W2 (5l v g az) . 3.27)

A similar calculation can be performed for the state. If we replacé, + (n/2) 3,
in equation (3.27) bys, + (1/2) 8.|, the gap equation becomes valid both for the Haldane
state and for theD state. Thus the excitation gap behaves as
n _|2/@En
-3,
2 <

The Haldanetb phase boundary can be obtained fregg, = 0, which leads to

20—1J'D+@—=D+1J) (1+1 W):o. (3.29)
T\ 1417

where equations (2.3), (3.3) and (3.9) are employed. Okarabt [10] have already
obtained this phase boundary equation, compared it with Hida’s numerical result [8] and
discussed its validity.
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If the critical value of D is denoted byD. when |J'| is fixed, we can rewrite
equation (3.28) as

ggap~ |D — D¢|’ (3.30)

v=_" (3.31)

Thus we obtain
VH=Vp=V (332)

wherevy (vp) is the critical exponent of the excitation gap when the Haldendseundary
is approached from the Haldanep] phase.

The calculation of the longitudinal spin correlatigsy Sj) by the use ofH{s has already
been done by the author [21]. Here we only write down the final expressiotSfof),
without entering into details:

—1)li—l i —1
(si5i) ~ 2 |j)—l| exp(—" ; '“) (1j =11 = o) (3.33)

whereé is the correlation length defined by

v v
f= "~ ‘3L+gaz ~|D - D™ (3.34)

€gap

Thusv is also the exponent of the correlation length as expected. Comparing the result of
[21] with the exact result for th&Y case [22], we may rely on the exponential factor in
equation (3.33), although the preceding power factor is not reliable.

Hida [8] proposed string order parameters for the Haldane phase amd fhigase. In
the S representation, these string order parameters are defined by

Odven= y |I”m Overlj — D (for the Haldane phage (3.35)
J—l|—>o0
0%y = ’ Ii”m Ogad(j — 1) (for the LD phase (3.36)
J—l|—0
with
Ogverlj — 1) = —4(85; explim (551 + S5, + -+ 55,2155 ) (3.37)
0%44(j — 1) = —4(S5;_ explim (55, + 85, 1 + -+ + S5_}5%) (3.38)
a=x,y,2. (3.39)

By the use of the identitﬁ; = exp(inS;”)/Zi valid for the spin% operators, we can rewrite
equations (3.37) and (3.38) as

Olverj — 1) = (@Xplim (S5, + 85,1 + -+ + S5_D) (3.40)
Olga(j — 1 = (explim(83;_, + 55, + - + S3)) (3.41)
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respectively. Since the slowly varying part of thecomponent of the spin density is
expressed agl/2m) (30/9x), the boson representations Of . (j — ) and O 4(j — ) are

Oéven(x - x/) = Oédd(x —x')
= (exp{i[0(x) — 6(x")]/2})
= (expli[¢ (x) — ¢ (x"]/2})
= 0%(x —x'). (3.42)

We note that the difference between 0§, (x — x’) and O 4(x — x’) is lost due to the
continuum approximation used in the bosonization method. ~

Let us calculateD? in the framework of thescHA. Due to the harmonic nature &is,
we have

0 (x — x') = exp{—3([0(x) — 6 (x")]")s}
= exp(—5(#%)s) exp{ (¢ (X)p(x))s} . (3.43)

The averagde (x)¢ (x'))s is estimated as [21]

C
(Pp()p(x))s = EKo(qc[lx — x|+ 1) (3.44)
ay = a(:y y =05772... (Euler’'s constant) (3.45)

whereK, (y) is thenth order modified Bessel function of the second kind. We note that the
parametery; is determined so that equation (3.26) is reproduced whenx’| = 0. Using
the asymptotic behaviour dfy(y)

Ko(y) ~ | zleﬂ' (y = 00) (3.46)
Yy
we obtain

0* = exp( — ;(¢?)s)
~ gl ~ |D — D¢V &2 (3.47)

If we denote the exponents 6f;,.,and O, by 285 and 287, respectively (for the factor 2,
we follow Hida's definition [8]), we see
n

Brn = Pip = 16— 4n =p. (3.48)

We can also calculate the asymptotic behaviou©étx — x’) when|x — x’| — oo just
on the Haldane-b boundary. Using equations (3.43)—(3.45) and taking the lijit> O,
we obtain

0*(x = x")|p=p, ~ |x —x'|7"* (3.49)
where the asymptotic form

Ko(y) ~ —logy y—0 (3.50)
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is employed. Hida [8] also numerically calculated the system size dependegg, paind
0¢4q On the Haldane-p boundary. He defined

Oé\/en(N”D:Dc ~ N (351)
Ogud(N)|p=p, ~ N~H® (3.52)

where N is the system size. Although Hida [8] used for these exponents, we ugeto
avoid confusion. From equation (3.49), we can expect

nm_

MH = ULD =
This result can also be obtained from the finite size scaling ansatz

O*(ID = Dc|, N) ~ N"* f(N|D — D¢|") (3.54)
where we note thalv/é ~ N|D — D¢|”. The form of equation (3.54) is chosen so that

equations (3.51) and (3.52) are reproduceddat D.. If we fix |D — D.| and take the
limit N — oo, we obtain

fx) ~x* (x — 00) (3.55)
O*(ID — D¢|, N = 00) ~ |D — Dc|* (3.56)

from the condition thaD*(|D — D¢|, N) should be independent &f whenN — oco. From
equations (3.47) and (3.48) it follows that

uv = 28 (3.57)

which readily leads to equation (3.53). The relation (3.57) was also noticed by Hida [8].

4. Discussion

We have calculated several critical exponents of the Haldangansition. These exponents

are controlled byv, which varies continuously on the Haldame—-boundary. Thus the
present transition is of the Gaussian universality class. This fact has already been pointed
out by several groups [8-10].

Table 1. Critical exponents of the Haldanes-transition. The exponents S, BLp, un and
uLp are numerical results of Hida [8, 23], amgheor and uiheor are calculated from Hida's by
the use of equations (4.2) and (4.3).

VAR BH BLo Btheor  MH KLD Htheor

15 0.801 01654+ 0.002 Q0141+ 0.004 Q150 04114 0.002 03524+ 0.004 Q375
2.0 0.879 0200+ 0.003 Q0184+ 0.002 Q0190 Q0454+ 0.005 0419+ 0.003 0431
25 0.975 0238+ 0.002 0223+ 0.002 0238 Q0489+ 0.003 0458+ 0.003 Q0487
3.0 1031 0255+ 0.001 0257+ 0.002 0266 0494+ 0.001 Q500+ 0.003 0515
4.0 1120 0297+ 0.005 0294+ 0.02 0310 0530+ 0.01 0525+ 0.04 0553
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In this paper we have used the mapping of the original spin Hamiltonian onto the
generalized version of the sine—Gordon Hamiltonian. Since several approximations have
been used in the course of the mapping, the valueDpfand the critical exponent
themselves are unreliable. We believe, however, that the present theory well describes the
gualitative feature of the Haldanes- transition. From equations (3.31), (3.48) and (3.53),
our predictions for the relations between critical exponents are

VH=Vp =V (41)
2v—1

Bu=PBp=B= 2 (4.2)
1

MH=pmp=p=1=7". (4.3)
v

The reliability of the present theory can be examined by testing whether equations (4.2)
and (4.3) hold or not in Hida’s numerical result [8, 23]. This test is summarized in table 1,
where the exponents By, Bip, un andup are numerical results of Hida amfieor and

Wtheor are calculated from Hida's through equations (4.2) and (4.3). As can be seen, the
values of Bieor and uuiheor agree very well with8y and 8. p, anduy and i p, respectively.
Therefore we can say that our theory successfully describes the qualitative feature of the
Haldane+D transition.
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